PD ISO/TS 16976-4:2019

BSI Standards Publication

Respiratory protective devices — Human factors

Part 4: Work of breathing and breathing resistance: Physiologically based limits

National foreword

This Published Document is the UK implementation of ISO/TS 16976-4:2019.

The UK participation in its preparation was entrusted to Technical Committee PH/4, Respiratory protection.

A list of organizations represented on this committee can be obtained on request to its secretary.

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

© The British Standards Institution 2019 Published by BSI Standards Limited 2019

ISBN 978 0 580 51450 0

ICS 13.340.30

Compliance with a British Standard cannot confer immunity from legal obligations.

This Published Document was published under the authority of the Standards Policy and Strategy Committee on 30 April 2019.

Amendments/corrigenda issued since publication

Date Text affected

TECHNICAL SPECIFICATION

PD ISO/TS 16976-4:2019 ISO/TS 16976-4

Second edition 2019-03-22

Respiratory protective devices — Human factors —

Part 4: Physiologically based limits

Appareils de protection respiratoire — Facteurs humains — Partie 4: Travail de respiration et de résistance à la respiration: limites physiologiques

Reference number ISO/TS 16976-4:2019(E)

© ISO 2019, Published in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org

PD ISO/TS 16976-4:2019 ISO/TS 16976-4:2019

Contents

Fore	word		iv		
Intro	oductio	n	v		
1	Scor	Je			
2	-	native references			
3		ns and definitions			
4		bols and abbreviated terms			
5	Pressure and volume changes during breathing				
	5.1	Pressure and volume changes in the absence of an RPD			
	5.2	The effect of RPD flow resistance on pressure and volume changes while			
		using an RPD	6		
	5.3	The effect of RPD with static pressure on pressure and volume changes while	(
	F 4	using an RPD	6		
	5.4	The effect of RPD flow resistance and static pressure on pressure and volume	7		
	5.5	changes while using an RPD Effects of high static pressure			
6	Work of breathing (WOB)				
	6.1	Physiological work versus physical work			
		6.1.1 General			
		6.1.2 Static work			
		6.1.3 Elastic work			
	6.0	6.1.4 Positive and negative physical work			
	6.2	Calculations of inspiratory WOB			
	6.3	Calculations of expiratory WOB			
	6.4	Calculations of total WOB 6.4.1 Calculations of the wearer's WOB while using an RPD			
		6.4.2 Calculations of WOB for an RPD only			
	6.5	Breathing resistance			
	6.6	Physiologically acceptable WOB			
7		er respiratory loads			
'	7.1	Static load			
	7.2	Elastic loads	-		
	7.3	Other loads			
	7.4	How respiratory loads add up			
8	Sum	mary			
Bibli	iograp	hy			

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see <u>www.iso.</u> <u>org/iso/foreword.html</u>.

This document was prepared by Technical Committee ISO/TC 94, *Personal safety* — *Personal protective equipment*, Subcommittee SC 15, *Respiratory protective devices*.

This second edition cancels and replaces the first edition (ISO/TS 16976-4:2012), which has been technically revised. The main changes compared to the previous edition are as follows:

- a) adjustment of key-points in Figures 3, 4 and 7 to correspond with the 50 %-reference line;
- b) adjustment of keys in Figures 3, 4, 7 and 8;
- c) adjustment of Figures 3, 4 and 6;
- d) clarification on flow resistance and elastic load given in 7.4.

A list of all parts in the ISO/TS 16976 series can be found on the ISO website.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at <u>www.iso.org/members.html</u>.

Introduction

A respiratory protective device (RPD) is designed to offer protection from the inhalation of hazardous substances. However, this protection requires extra effort by the respiratory muscles as they need to generate higher pressures to overcome the associated respiratory loads imposed by the RPD.

This page deliberately left blank

Respiratory protective devices — Human factors —

Part 4: Work of breathing and breathing resistance: Physiologically based limits

1 Scope

This document describes how to calculate the work performed by a person's respiratory muscles with and without the external respiratory impediments that are imposed by RPD of all kinds, except diving equipment. This Document describes how much additional impediment people can tolerate and contains values that can be used to judge the acceptability of an RPD.

NOTE These calculations are explained in some textbooks on respiratory physiology (in the absence of an RPD), but most omit them or are incomplete in their explanations.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 16972, Respiratory protective devices — Definitions of terms pictograms

3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 16972 and the following apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at <u>https://www.iso.org/obp</u>
- IEC Electropedia: available at http://www.electropedia.org/

3.1

body temperature pressure saturated

BTPS

standard condition for the expression of ventilation parameters

Note 1 to entry: Body temperature (37 $^{\circ}\text{C})$, ambient pressure and water vapour pressure (6,27 kPa) in saturated air.

3.2

compliance

change in volume of the human lung that results from a change in pressure

Note 1 to entry: The compliance is measured in l/kPa.

Note 2 to entry: This term is the typical term for the elastic behaviour of the lungs and chest. Compliance is the inverse of elastance.

3.3

elastance

change in pressure that results from a given volume change of the human lung

Note 1 to entry: The elastance is measured in kPa/l.

Note 2 to entry: This term is the typical term for the elastic behaviour of an RPD. Elastance is the inverse of compliance.

3.4

relaxation volume

lung volume when respiratory muscles are relaxed, i.e. the volume at the beginning of an inspiration, also known as functional residual capacity (FRC) and expiratory reserve volume (ERV)

3.5

tidal volume

 $V_{\rm T}$ volume of a breath

Note 1 to entry: The tidal volume is measured in litres BTPS.

3.6

vital capacity

VC

volume of the largest breath a person can take, i.e. the volume difference between a maximum inspiration and a maximum expiration

Note 1 to entry: The vital capacity is measured in litres BTPS.

3.7

work of breathing

WOB

work required for an entire breathing cycle

Note 1 to entry: The work in breathing is measured in Joules.

3.8

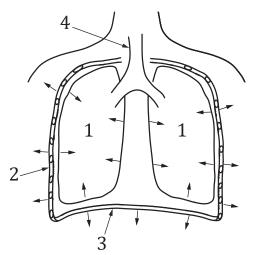
work of breathing per tidal volume

WOB/*V*_T normalized WOB (equivalent to volume-averaged pressure)

Note 1 to entry: The work in breathing per tidal volume is measured in Joules per litre = kPa.

4 Symbols and abbreviated terms

BTPS	body temperature pressure saturated
ERV	expiratory reserve volume
FRC	functional residual capacity
RPD	respiratory protective device
VC	vital capacity
WOB	work of breathing
$p_{\rm el}$	pressure required to overcome the elastance
p _{aw}	pressure required to overcome the flow resistance of the airways


 $p_{i,ext}$ pressure required to overcome the inspiratory flow resistance of the RPD

5 Pressure and volume changes during breathing

5.1 Pressure and volume changes in the absence of an RPD

During an inspiration the inspiratory muscles contract which makes the chest expand and the diaphragm flatten. This action causes the lungs to expand to a larger volume. Even in the absence of flow resistance, it takes a certain pressure to expand the chest and lungs. The term used in respiratory physiology for this elastic behaviour is compliance. The term compliance is also used in laws and regulations; to avoid confusion with this use of the word, the remainder of this document will use the term elastance instead. See Note 2 to entry of 3.3, "elastance is the inverse of compliance". Elastance describes how much an elastic material changes when a force or a pressure is applied.

Figure 1 shows the lungs (item 1) inside the chest wall (item 2) and diaphragm (item 3). The lungs are connected to the airway (item 4). The elastance of the lungs tries to act to shrink them (shown by the arrows), similarly to a stretched balloon trying to shrink in volume. The elastance of the chest acts by trying to expand it. Thus, in the absence of muscle effort, the forces on the chest and lungs oppose each other and will, at some volume, be equal and opposite and come to a position of rest. The lung volume at which this happens is referred to as the relaxation volume. During an inhalation the chest wall expands and the diaphragm (item 3) moves downwards.

Key

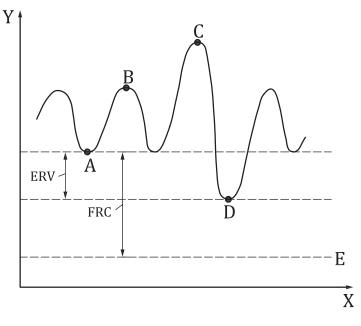
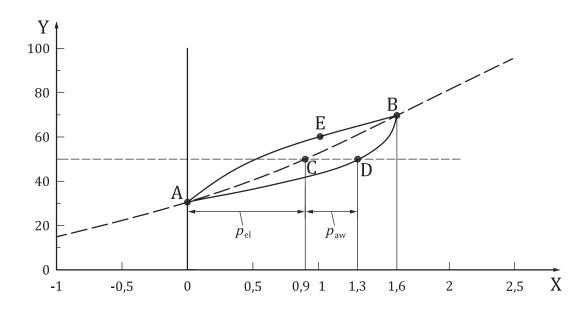

- 1 lungs
- 2 chest wall
- 3 diaphragm
- 4 airway

Figure 1 — Schematic cross-section of a person's chest and lungs

<u>Figure 2</u> illustrates/defines changes in breathing. An inspiration is shown to start at point A and the lung volume increases until it reaches its end, point B, where the following expiration starts. The volume difference between points A and B is the size of the breath, referred to as the tidal volume.

A maximum inspiration is shown at point C and a maximum expiration at point D. The volume difference between these two points is the maximum volume change achievable and is referred to as the vital capacity, VC. The range of VC varies from 3 l to 6 l and depends on a person's age, height and gender. Even with a maximum expiratory effort some volume remains in the lungs. Had the lungs been able to be emptied completely the volume illustrated by line E would have been reached.

Point A is the point where the respiratory muscles are relaxed and that volume is referred to as "relaxation volume". Another term used for this point is "expiratory reserve volume", ERV, which can be calculated as the difference between points A and D. A third term used is "functional residual capacity", FRC, which is the volume difference between points A and E.



Key

- X time
- Y lung volume
- A start of an inspiration
- B end of an inspiration and start of the following expiration
- C maximum inspiration
- D maximum expiration
- E lungs and chest completely empty

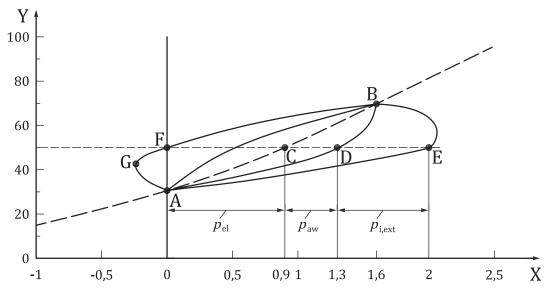
Figure 2 — Definitions of volume changes

In order to inhale, effort is required to overcome the combined elastance of the chest and lungs, as well as the flow resistance in the airways. <u>Figure 3</u> illustrates the pressure generated and the resulting volume changes.

Key

- X alveolar pressure, in kPa
- Y volume, in percent of VC
- A start of an inspiration and end of the previous expiration
- B end of an inspiration and start of the following expiration
- C point on the elastance line partway through an inspiration
- D point on the combined elastance and pressure drop line during an inspiration
- E point on the combined elastance and pressure drop line during an expiration

NOTE The interrupted line is not a straight line but becomes less steep at low and high volume.

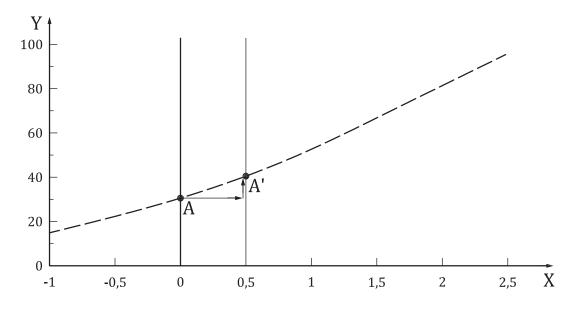

Figure 3 — Lung volume versus pressure in the absence of an RPD

For a person, the muscles generate the pressure which in turn generates a change in lung volume. Therefore, the pressure is the independent variable and the volume is the dependent one. It is the opposite for an RPD, for which it is the change in volume in the lungs (i.e. gas flow) that generates pressure across a flow resistance. At the beginning of the inspiration (point A in Figure 3) no pressure is generated, i.e. it is the relaxation volume. At the end of the inspiration (point B) the greatest volume has been achieved, called the tidal volume, $V_{\rm T}$. The interrupted line shows the interaction of the pressures and volumes from the combined elastance of the chest and lungs. For example, at point C the volume has changed from about 30 % of VC (at point A) to about 50 % of VC. The volume change could then be 0,9 l. With a typical textbook value for elastance of 1 kPa/l, the elastance requires a pressure change of about 0.9 kPa. The lower solid line ADB shows the total pressure (elastance plus pressure due to flow resistance) generated by the respiratory muscles and the resulting change in volume during the inspiration. The expiration follows the upper solid line BEA. To reach the volume of 50 % VC during inspiration (point D), a total pressure of about 1,3 kPa is required. This is the sum of the pressure of about 0,9 kPa required for the total elastance, p_{el} , and an additional 0,5 kPa (approximately) for the flow resistance of the airway, paw. Towards the end of the inspiration the flow slows down and the pressure drop due to flow resistance decreases and the inspiration ends at point B where there is no flow. Thus, the pressure at point B is only due to the elastance. The tidal volume becomes 70 % VC – 30 % VC = 40 %VC, giving a resulting pressure of $(0,40 \times 4)$ l \times 1 kPa/l = 1,6 kPa. The inspiratory and expiratory curves combine to form a volume-pressure loop.

At the end of the inspiration (point B) pressure is stored due to the total elastance. During low breathing rates this pressure is sufficient to move the gas out during the following expiration. Thus, such an expiration is said to be passive because the expiratory muscles are inactive. However, the inspiratory muscles are active by controlling the flow. When more ventilation is desired, the pressure due to elastance is not sufficient and the expiratory muscles take an active part.

5.2 The effect of RPD flow resistance on pressure and volume changes while using an RPD

An RPD imposes additional flow resistance. This external flow resistance is present both during inspiration and expiration, but does not have to be of the same magnitude. For instance, an unassisted filtering RPD will generally have a larger inspiratory flow resistance. Figure 4 illustrates how the internal and external flow resistances add up. The pressure needed to achieve a volume of 50 % VC is now the pressure at point E. At this point, the external, inspiratory flow resistance requires an additional pressure increase by about 0,7 kPa ($p_{i,ext}$) for a total pressure of about 2 kPa ($p_{el} + p_{aw} + p_{i,ext}$).


Кеу

- X alveolar pressure, in kPa
- Y volume, in percent of VC
- A start of an inspiration and end of the previous expiration
- B end of an inspiration and start of the following expiration
- C point on the elastance line partway through an inspiration
- D point on the combined line for elastance and internal pressure drop during an inspiration
- E point on the combined line for elastance and pressure drop (internal and external) during an inspiration
- F point during an expiration where expiratory muscles start to generate pressure to continue expiration
- G point during expiration, beyond point F, where the expiratory muscles generate pressure

Figure 4 — Lung volume versus pressure in the presence of an RPD

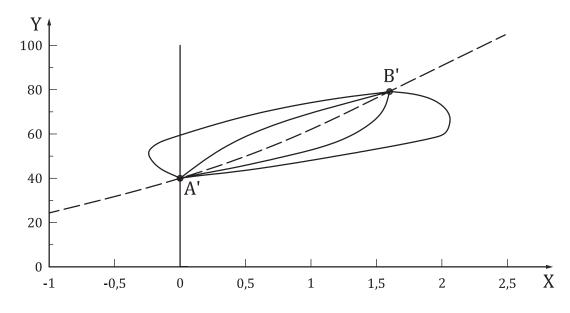
5.3 The effect of RPD with static pressure on pressure and volume changes while using an RPD

Some RPD are designed to have a positive pressure to improve protection against contaminants. Figure 5 illustrates how such a pressure influences lung mechanics. For this illustration, a static pressure (i.e. the pressure in the RPD in the absence of gas flow) of +0,5 kPa is assumed. Without the positive pressure, an inspiration starts at point A. The static pressure moves the new relaxation volume (point A') 0,5 kPa horizontally. The elastance curve determines the vertical movement which becomes 10 % VC. Thus, this static pressure is sufficient to move the relaxation volume from 30 % VC to 40 % VC.

Key

- X alveolar pressure, in kPa
- Y volume, in percent of VC
- A start of an inspiration
- A' start of an inspiration with a positive static pressure

Figure 5 — Lung volume versus pressure in the presence of an RPD with static pressure


5.4 The effect of RPD flow resistance and static pressure on pressure and volume changes while using an RPD

For this type of RPD, the static pressure changes the relaxation volume. Using the numbers from the example given in <u>5.3</u> and in <u>Figure 5</u>, the new starting point is at 40 % VC. <u>Figure 6</u> illustrates how the volume versus pressure plots changes. By comparing <u>Figures 4</u> and <u>6</u>, it can be noted that the only noticeable difference is the starting and ending points (A' and B'). Since A' is the relaxation volume, the pressure generated by the respiratory muscles is zero. However, the pressure measured in the RPD would be 0,5 kPa.

5.5 Effects of high static pressure

As can be seen from Figure 6, a large static pressure will move the end of a breath (B') towards higher lung volumes and restrict the tidal volume as point B' approaches 100 % VC. In addition, at high lung volumes it becomes harder and harder to reach the desired volume at the end of inspiration. It has been shown that people resist the volume change imposed by static loads, both positive and negative^[8][11]. Only a third to half of the volume change that could be expected actually happened. This means that the respiratory muscles are active, generating the required pressure to resist the imposed static pressure. Such muscle activity is a physiological load.

The typical diastolic pressure (i.e. pressure between heart beats) in the blood circulation in the lung is 0,7 kPa to 1,1 kPa^{[4][16]}. Therefore, an excessive positive pressure may also have undesirable effects by reducing the blood flow in the lungs and therefore the venous return. High static pressures will also make expiration more difficult, increasing the work for the expiratory muscles.

Key

X alveolar pressure relative to relaxation pressure, in kPa

- Y volume, in percent of VC
- A' start of an inspiration and end of the previous expiration
- B' end of an inspiration and start of the following expiration

Figure 6 — Lung volume versus pressure in the presence of an RPD with flow resistance and static pressure

6 Work of breathing (WOB)

6.1 Physiological work versus physical work

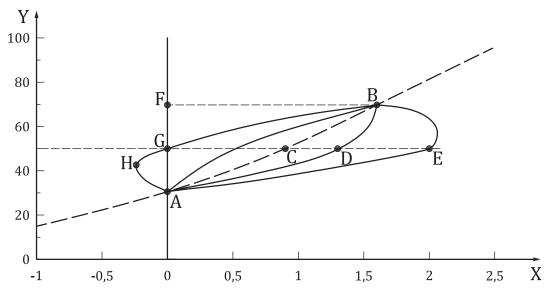
6.1.1 General

There is a difference between the physiological work and physical work. This is particularly noticed from static work or when work is performed on elastic materials.

6.1.2 Static work

Static work is performed when a muscle is active but no motion results, for instance when holding an arm outstretched. It can be tiring to do so. This is physiological work since the muscle is expending energy. However, from a physical perspective no work is done since there was no motion.

6.1.3 Elastic work


Physiological work is also performed against elastic materials. Consider an ideal rubber band: when the band is stretched, energy is stored and can be returned when the band is returned to its original length. Therefore, no net physical work was performed. If a muscle is used to stretch this rubber band, then effort is expended by the muscle. When the rubber band is allowed to return to its original length under control (not just let go of) more effort is expended. In other words, the energy stored in the band is not returned to the muscle. On the contrary, energy is consumed during both the stretching phase and the returning phase. Since the force generated is always in the same direction but the direction of the resulting movement changes when the rubber band shortens, the product can be either positive or negative.

6.1.4 Positive and negative physical work

From a physical perspective, negative work can be seen as the return of energy. However, from a physiological perspective, both positive physical work and negative physical work cost energy. The physiological cost of negative work is less than for positive work (see, for example, References [1] and [9]).

6.2 Calculations of inspiratory WOB

The inspiratory WOB can be calculated from recordings of pressure and the resulting volume. The work can be divided into three parts: work against the elastance, the internal flow resistance and external, inspiratory flow resistance. The work against the elastance can be seen in Figure 7 as the triangle formed by ACBFA. The work against internal flow resistance can be seen as the area formed by ADBCA. Similarly, the work against the external, inspiratory flow resistance can be seen as the area formed by AEBDA. Thus, the total work (physical as well as physiological) of the inspiration is the area enclosed by the AEBFA.

Кеу

- X alveolar pressure, in kPa
- Y volume, in percent of VC
- A start of an inspiration and end of the previous expiration
- B end of an inspiration and start of the following expiration
- C point on the elastance line partway through an inspiration
- D point on the combined line for elastance and internal pressure drop during an inspiration
- E point on the combined line for elastance and pressure drop (internal and external) during an inspiration
- F point at zero pressure and the same volume as point B
- G point during an expiration where expiratory muscles start to generate pressure to continue expiration
- H point during expiration, beyond point G, where the expiratory muscles generate pressure

Figure 7 — Lung volume versus pressure for calculations of WOB: Illustration for a person wearing a resistive RPD without static pressure (see <u>6.2</u> and <u>6.3</u> for details)

6.3 Calculations of expiratory WOB

The expiratory WOB can be seen for the breath in <u>Figure 7</u> broken down in two parts. The stored elastic pressure pushes the gas out but inspiratory muscles are generating pressure to control the expiratory flow. Part 1 of the work is represented by the area formed by BFGB. Since the pressure generated is positive but the flow has changed direction, the physiological work is negative. Part 2, the positive

physical and positive physiological work generated by the expiratory muscles, is represented by the area enclosed by GHAG.

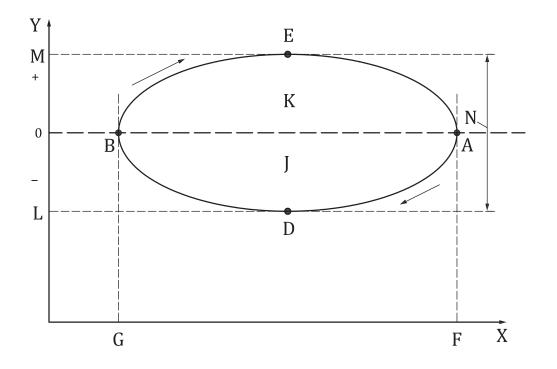
6.4 Calculations of total WOB

6.4.1 Calculations of the wearer's WOB while using an RPD

The total WOB is the sum of the inspiratory and expiratory physical work as explained in <u>6.2</u> and <u>6.3</u>. For the breath in <u>Figure 7</u> the physical positive work by the inspiratory muscles is the area AEBFA. Negative physiological work by the inspiratory muscles is BFGB. Positive work by the expiratory muscles is represented by the area GHAG.

It is obvious that the WOB for an RPD and its wearer is difficult to predict and calculate. The parameters needed (e.g. flow resistance, elastance, cost of negative work) are hard to quantify in all situations and vary between individuals. It is not practical to provide theoretical calculations for all situations. However, empirical data are available to guide in finding acceptable levels of WOB.

6.4.2 Calculations of WOB for an RPD only


A brief description is warranted to show the link between a person's volume-pressure loop and an RPD's pressure-volume loop. It is also worth noting that, for an RPD, the air flow is imposed on it by the wearer and this causes a pressure change. Therefore, for an RPD, the volume is the independent variable and the pressure the dependent one.

NOTE 1 Measurements for the WOB for an RPD alone are shown in <u>ISO 16900-12</u>.

Figure 8 shows an example of a pressure-volume loop for just an RPD. Axis X shows volume changes and axis Y shows the pressure. An inspiration starts at point A and follows the line ADB and ends at point B. The tidal volume is the difference in volume between points F and G. The expiration follows line BEA. The inspiratory WOB is the area J enclosed by ADBA. The expiratory WOB is the area K enclosed by BEAB. Any elastic behaviour of the RPD would be shown as pressure difference between points A and B.

Commonly, the WOB/*V*_T varies from 0,1 kPa at rest up to over 4 kPa at 135 l/min.

NOTE 2 See <u>ISO 16900-12</u> for more information.

Кеу

- X volume
- Y pressure
- A start of an inspiration and end of the previous expiration
- B end of an inspiration and start of the following expiration
- D lowest pressure point during the inspiration
- E highest pressure point during the expiration
- F volume at the start of inspiration
- G volume at the end of inspiration
- J area representing inspiratory WOB
- K area representing expiratory WOB
- L lowest inspiratory pressure
- M highest expiratory pressure
- N peak to peak pressure

Figure 8 — Pressure-volume loop for an RPD (see this subclause for details)

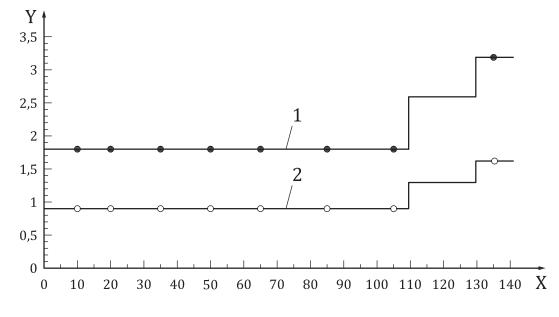
6.5 Breathing resistance

Peak inhalation breathing pressure (historically called "inhalation breathing resistance") is the lowest pressure during inspiration (L in Figure 8). Peak exhalation breathing pressure (historically called "exhalation breathing resistance") is the highest pressure during expiration (M). However, the WOB includes all parts and dynamic behaviour of an RPD during a breath, not just the peak pressures.

6.6 Physiologically acceptable WOB

Several authors^{[3][5][6][7][14][15][17][18]} have proposed limits on the respiratory effort imposed by an RPD. Data have recently been summarized^[13] from these studies and new data added from exercise testing at high workloads in a laboratory with and without an unassisted filtering RPD. In deciding on acceptable levels of WOB, considerations were given to the effects of flow resistance in three ways:

a) lack of reduction in minute ventilation,


PD ISO/TS 16976-4:2019 ISO/TS 16976-4:2019

- b) lack of reduction in exercise endurance,
- c) avoidance of respiratory distress in 80 % to 90 % of the people studied.

The limits are expressed as normalized WOB, i.e. WOB divided by the tidal volume. This is equivalent to volume-averaged pressure and has the unit of pressure (kPa).

The ability to tolerate added respiratory loads may be affected by certain diseases.

Most RPD have differences between the inspiratory and expiratory flow resistance. Therefore, the WOB should be calculated separately for inspiration and expiration. It was concluded^[13] (see Figure 9) that for long duration exercise (up to 1 h) the inspiratory WOB/V_T should not exceed 0,9 kPa. The authors^[13] noted that people who could maintain high minute ventilations could also sustain higher levels of WOB/V_T. Thus, for short-term limits with a minute ventilation exceeding 110 l/min, the inspiratory WOB/V_T should be less than 1,3 kPa, while for minute ventilations exceeding 130 l/min the inspiratory WOB/V_T should be less than 1,6 kPa. The authors argued, based on two published studies, that the expiratory WOB/V_T can be as large as the inspiratory WOB/V_T. The authors further proposed that the peak inspiratory pressure should not exceed 1,2 kPa for minute ventilations up to 110 l/min; it should not exceed 1,8 kPa for minute ventilations in the range 110 l/min to 130 l/min and for minute ventilation above 130 l/min it should not exceed 2,0 kPa. Table 1 shows a summary of the values for the eight minute ventilations shown in ISO 16900-12:2016, Table 1.

Key

- X minute ventilation, in l/min
- Y WOB per tidal volume, WOB/*V*_T, in kPa
- 1 maximum total WOB/V_T
- 2 maximum level for each of inspiratory and expiratory WOB/V_T

NOTE The dots indicate the eight classes of minute ventilations shown in <u>ISO 16900-12:2016</u>, Table 1.

Figure 9 — Physiologically acceptable levels of WOB/VT

Table 1 — Physiologically acceptable levels of WOB/ <i>V</i> _T , peak pressures and elastance tabulated
for the eight classes of minute ventilations

Minute ven-	WOB/V _T		Peak pressures		Elastance	
tilation	Inspiratory	Expiratory	Inspiratory	Expiratory	Elastalice	
l/min	kPa	kPa	kPa	kPa	kPa/l	
10						
20						
35						
50	0,9	0,9	1,2	1,2	1.0	
65					1,0	
85						
105						
135	1,6	1,6	2,0	2,0		

7 Other respiratory loads

7.1 Static load

5.4 showed how the relaxation volume changes with externally applied static pressure and pointed out that tidal volume can become restricted. A slight increase in lung volume is likely to increase the diameter of the airways which would decrease the flow resistance. A few studies have been conducted on the effects of static pressure in divers. These are summarized in Reference [18] which states that static loads for exercising people should not exceed +1,0 kPa to +1,5 kPa and should not be more negative than -1 kPa.

7.2 Elastic loads

As discussed in 6.1.3, there is a physiological load associated with elastic materials. The elastic behaviour of the chest and lungs are referred to as compliance in respiratory physiology while for an RPD it is referred to as elastance. An RPD can exhibit elastance if a mask or a hose deforms during heavy breathing. An RPD with spring loaded bags or bellows (such as closed-circuit RPD) has elastance since the pressure changes with volume. Apparently, only one study has determined acceptable levels of external elastance^[18]. The investigators found that an imposed elastance of 0,7 kPa/l was acceptable but 1,4 kPa/l was not. In these experiments with diving subjects the breathing resistance was kept at a minimum. People wearing tight wetsuits or tight elastic straps may experience an additional elastic load. Two other limits on elastance^{[9][12]} have set the limit to be 1,0 kPa/l which is set as the limit here (see Table 1).

7.3 Other loads

Restrictive straps may force a person to change body posture which may restrict breathing, thus making it harder to use the RPD. A change in body posture may also change the lung and chest compliance.

Inspired CO_2 (e.g. from the respiratory interface dead space and/or from incomplete CO_2 removal in a rebreather) forces a wearer to increase the minute ventilation. The weight of an RPD will also force the wearer to work harder and increase the minute ventilation. Increased minute ventilation amplifies the effects of the respiratory loads. The WOB should therefore be judged at the resulting minute ventilation, not at the nominal minute ventilation.

7.4 How respiratory loads add up

It is not obvious how flow resistance, static load and elastic loads add to a total load. After all, flow resistance acts primarily at the highest flow (typically in the middle of the breath), however the resulting effects of flow resistance are measured by WOB/V_T . The elastic load acts mostly at large volumes (end

PD ISO/TS 16976-4:2019 ISO/TS 16976-4:2019

of a breath) while a static load is always present. However, there is an easy way to add the loads^[18]: they are additive if each load is expressed as a fraction of the maximum value when acting alone in that situation. This means that the total acceptable respiratory load can be calculated by adding the relative value for each load:

% total load = % WOB/ $V_{\rm T}$ + % static load + % elastic load

For instance, assume that an RPD has an inspiratory WOB/ V_T of 0,5 kPa and an expiratory of WOB/ V_T of 0,4 kPa at 65 l/min. The total WOB/ V_T would be 0,9 kPa. At 65 l/min the acceptable WOB/ V_T is 1,8 kPa. Thus, the %WOB/ V_T is 0,9/1,8 kPa = 0,5, i.e. the measured WOB/ V_T is 50 % of what is acceptable at that workload. Any other respiratory loads are handled the same way and the total can be calculated. If the sum approaches or exceeds 100 % the wearer will be restricted.

It is possible to change one of the parameters, say the static load, which may influence the practical value of the WOB/V_T .

8 Summary

The physiologically acceptable WOB has to be considered separately for an inspiration and an expiration. The maximum acceptable WOB for each of the inspiratory and expiratory WOB/V_T , as well as peak pressures (breathing resistance), depend on the minute ventilation. The values given apply to all types of RPD.

Bibliography

- [1] <u>ISO 16900-12</u>, Respiratory protective devices Methods of test and test equipment Part 12: Determination of volume-averaged work of breathing and peak respiratory pressures
- [2] ABBOTT B.C., BIGLAND B., RITCHIE J.M. The Physiological Cost of Negative Work. J. Physiol 1952; 117: 380-390
- [3] BENTLEY, R.A., GRIFFIN, O.G., LOVE, R.G., MUIR, D.C.F., SWEETLAND, K.F., Acceptable Levels for Breathing Resistance of Respiratory Apparatus. Arch. Environ. Health, 1973; 27 (4): 273-2`0
- [4] BERNE R.M., & LEVY M.N. *Cardiovascular Physiology.* Fifth Edition, the C.V. Mosby Company, St. Louis, MO; 1986
- [5] CARETTI D.M., & WHITLEY J.A. Exercise Performance during Inspiratory Resistance Breathing under Exhaustive Constant Load Work. *Ergonomics* 2007; **41** (4): 501-511
- [6] COOPER E.A. Suggested Methods of Testing and Standards of Resistance for Respiratory Protective Devices. *J. Appl. Physiol.* 1960; **15** (6): 1053-1061
- [7] DENO N.S., KAMON E., KISER D.M. Physiological Responses to Resistance Breathing During Short and Prolonged Exercise. *Am. Ind. Hyg. Assoc. J.*, 1981; **42** (8): 616-623
- [8] DERION T., REDDAN W.G., LANPHIER E.H. Static lung load and posture effects on pulmonary mechanics and comfort in underwater exercise. Undersea Biomedical Research, 1992; 19(2): 85-96
- [9] European Committee for Standardization. *Respiratory Equipment Self-contained Re-breathing Diving Apparatus*, European Standard EN 14143, European Committee for Standardization
- [10] HESSER C.M., LINNARSSON D., BJURSTEDT H. Cardiorespiratory and Metabolic Responses to Positive, Negative and Minimum-load Dynamic Leg Exercise. *Respiration Physiol* 1977; **30**: 51-67
- [11] HICKEY D.D., NORFLEET W.T., PÅSCHE A.J., LUNDGREN C.E.G. Respiratory function in the upright, working diver at 6.8 ATA (190 fsw). *Undersea Biomedical Research*, 1987; **14**(3): 241-262
- [12] NATO Standard Agreement 1410: Standard unmanned test procedures and acceptance criteria for underwater breathing apparatus
- [13] SHYKOFF B.S., & WARKANDER D.E. Physiologically Acceptable Resistance of an Air Purifying Respirator, *Ergonomics* 2011; **54**(12): 1186-1196
- [14] SILVERMAN L., LEE R.C., LEE G., DRINKER K.R., CARPENTER T.M Fundamental Factors in the Design of Protective Respiratory Equipment: Inspiratory Airflow Measurements of Human Subjects with and without Resistance, Final Report OSRD Contract OEMar306. Harvard, MA: Harvard School of Public Health, 1943
- [15] SILVERMAN L., LEE G., PLOTKIN T., AMORY L., YANCY A.R. Fundamental Factors in the Design of Protective Respiratory Equipment: Inspiratory and Expiratory Air Flow Measurements on Human Subjects with and without Resistance at Several Work Rates, Report OSRD no 5732. Harvard, MA: Harvard School of Public Health, 1945
- [16] VANDER A.J., SHERMAN J.H., LUCIANO D.S *Human Physiology; the Mechanisms of Body Function*. Sixth edition. McGraw-Hill Inc, New York, 1994
- [17] WARKANDER D.E., NORFLEET W.T., NAGASAWA G.K., LUNDGREN C.E.G. Physiologically and Subjectively Acceptable Breathing Resistance in Divers' Breathing Gear. Undersea Biomed Res. 1992; **19**: 427-445

[18] WARKANDER D.E., & LUNDGREN C.E.G *Development of Comprehensive Performance Standards for Underwater Breathing Apparatus* [online]. Buffalo, NY, Center for Research and Education in Special Environments, State University of New York at Buffalo, 2001. Available from: <u>http://archive.rubicon-foundation.org/xmlui/handle/123456789/7598</u> [Accessed 10 Dec 2010]

This page deliberately left blank

British Standards Institution (BSI)

BSI is the national body responsible for preparing British Standards and other standards-related publications, information and services.

BSI is incorporated by Royal Charter. British Standards and other standardization products are published by BSI Standards Limited.

About us

We bring together business, industry, government, consumers, innovators and others to shape their combined experience and expertise into standards -based solutions.

The knowledge embodied in our standards has been carefully assembled in a dependable format and refined through our open consultation process. Organizations of all sizes and across all sectors choose standards to help them achieve their goals.

Information on standards

We can provide you with the knowledge that your organization needs to succeed. Find out more about British Standards by visiting our website at bsigroup.com/standards or contacting our Customer Services team or Knowledge Centre.

Buying standards

You can buy and download PDF versions of BSI publications, including British and adopted European and international standards, through our website at bsigroup.com/shop, where hard copies can also be purchased.

If you need international and foreign standards from other Standards Development Organizations, hard copies can be ordered from our Customer Services team.

Copyright in BSI publications

All the content in BSI publications, including British Standards, is the property of and copyrighted by BSI or some person or entity that owns copyright in the information used (such as the international standardization bodies) and has formally licensed such information to BSI for commercial publication and use.

Save for the provisions below, you may not transfer, share or disseminate any portion of the standard to any other person. You may not adapt, distribute, commercially exploit, or publicly display the standard or any portion thereof in any manner whatsoever without BSI's prior written consent.

Storing and using standards

Standards purchased in soft copy format:

- A British Standard purchased in soft copy format is licensed to a sole named user for personal or internal company use only.
- The standard may be stored on more than 1 device provided that it is accessible by the sole named user only and that only 1 copy is accessed at any one time.
- A single paper copy may be printed for personal or internal company use only.
- Standards purchased in hard copy format:
- A British Standard purchased in hard copy format is for personal or internal company use only.
- It may not be further reproduced in any format to create an additional copy. This includes scanning of the document.

If you need more than 1 copy of the document, or if you wish to share the document on an internal network, you can save money by choosing a subscription product (see 'Subscriptions').

Reproducing extracts

For permission to reproduce content from BSI publications contact the BSI Copyright & Licensing team.

Subscriptions

Our range of subscription services are designed to make using standards easier for you. For further information on our subscription products go to bsigroup.com/subscriptions.

With **British Standards Online (BSOL)** you'll have instant access to over 55,000 British and adopted European and international standards from your desktop. It's available 24/7 and is refreshed daily so you'll always be up to date.

You can keep in touch with standards developments and receive substantial discounts on the purchase price of standards, both in single copy and subscription format, by becoming a **BSI Subscribing Member**.

PLUS is an updating service exclusive to BSI Subscribing Members. You will automatically receive the latest hard copy of your standards when they're revised or replaced.

To find out more about becoming a BSI Subscribing Member and the benefits of membership, please visit bsigroup.com/shop.

With a **Multi-User Network Licence (MUNL)** you are able to host standards publications on your intranet. Licences can cover as few or as many users as you wish. With updates supplied as soon as they're available, you can be sure your documentation is current. For further information, email subscriptions@bsigroup.com.

Revisions

Our British Standards and other publications are updated by amendment or revision. We continually improve the quality of our products and services to benefit your business. If you find an inaccuracy or ambiguity within a British Standard or other BSI publication please inform the Knowledge Centre.

Useful Contacts

Customer Services Tel: +44 345 086 9001 Email (orders): orders@bsigroup.com Email (enquiries): cservices@bsigroup.com

Subscriptions

Tel: +44 345 086 9001 Email: subscriptions@bsigroup.com

Knowledge Centre

Tel: +44 20 8996 7004 Email: knowledgecentre@bsigroup.com

Copyright & Licensing

Tel: +44 20 8996 7070 Email: copyright@bsigroup.com

BSI Group Headquarters

389 Chiswick High Road London W4 4AL UK